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Introduction

A differential equation (DE) is an equation that includes one
or more unknown functions and their derivatives. If a DE contains
an unknown function and its derivatives which depend on an inde-
pendent variable x then it is called an ordinary differential equation
(ODE). A DE is called linear if the relationship of the unknown
function and its derivatives is linear; otherwise, it is called nonlinear.
Most ODEs encountered in physics are linear, therefore, there are
many approach for solving them. An idea of transforming nonlinear
DEs into linear DEs and then solve the last ones may be a reason-
able candidate. However, it works for only some cases. Therefore,
studying independently the solutions of nonlinear DEs is necessary,
and it also contains a lot of challenges. In this dissertation, we study
liouvillian general solutions of first-order algebraic ordinary differ-
ential equations (AODEs) which is a fundamental problem in the
theory of non-linear algebraic DEs.

A first-order AODE is a DE of the form F py, y1q “ 0, where
F is an irreducible polynomial in two variables with coefficients in
Kpxq, K is an algebraically closed field of characteristic zero. Solving
such DE is a problem of finding differentiable functions y “ ypxq

satisfying F pypxq, y1pxqq “ 0. If ypxq belongs to Kpxq (resp. an
algebraic extension field of Kpxq), then it is called a rational solution
(resp. an algebraic solution). If such a solution ypxq belongs to a
liouvillian extension of Kpxq, then it is called a liouvillian solution.
A solution may contain an arbitrary constant. In this case, such a
solution is called a general solution. For example, ypxq “ exppx2`cq

is a liouvillian general solution of the first-order AODE y1 ´2xy “ 0.

First-order AODEs have been studied a lot, and there are
many solution methods for special classes of such AODEs. The
study of these AODEs can be dated back to the works of Fuchs [16]
(1884). In [20] (1926), Ince presented an overall picture of ODEs. In
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[30,31] (1970s), Matsuda classified differential function fields having
no movable critical points up to isomorphism of differential fields.
By focusing on particular solutions, in [29] (1913), Malmquist stud-
ied the class of first-order AODEs having transcendental meromor-
phic solutions, and Eremenko revisited later in [10] (1982). Applied
Matsuda’s theory, Eremenko in [11] (1998) presented a theoretical
consideration on a degree bound for rational solutions which sheds
light on the problem of finding such a solution’s explicit form.

Finding the closed form solution of an ODE can be traced
back to the works of Liouville (1830s) for the simplest ODE y1 “ α,

where α P k and k is a differential field of characteristic zero. If such
an equation has a solution in some elementary differential extension
field E of k having the same subfield of constants K, then there
exist constants c1, c2, . . . , cn P K, elements u1, u2, . . . , un P Kk and
v P k such that

α “

n
ÿ

i“1
ci

u1
i

ui
` v1.

In [44] (1968), Rosenlicht showed how Liouville theorem can be han-
dled algebraically. For the algorithm consideration of such ODE, the
pioneer work is due to Risch. In [41, 42] (1960s), Risch described
a method to determine an elementary integral

ş

u where u is an el-
ementary function. To extend Risch’s method, in [51, 52] (1970s),
Singer studied elementary solutions of first-order AODEs. As a spe-
cial result, there are necessary and sufficient conditions for the ODE
y1 “ Rpyq P Cpyq having an elementary solution. In [56] (2017),
Srinivasan generalized this result to the case of liouvillian solutions
with the same conditions. In [25] (1986), Kovacic presented an ef-
fective method to find liouvillian solutions of second order linear
homogeneous ODEs. This work contains an algorithm for finding
rational general solutions of a Riccati equation which is applicable
to the works of Chen and Ma [7] (2005) and Vo et al. [57] (2018) for
determining rational general solutions of first-order parametrizable
AODEs. In [19] (1996), Hubert studied implicit general solutions
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of F py, y1q “ 0 by computing Gröbner bases. In [40] (1983), Prelle
and Singer studied elementary first integrals Ipx, yq of the following
system of ODEs

dx

dz
“ P px, yq; dy

dz
“ Qpx, yq, where P px, yq, Qpx, yq P Crx, ys.

Such a first integral induces a general solution Ipx, yq “ c of the

ODE y1 “
Qpx, yq

P px, yq
. In [55] (1992), Singer revisited this problem for

finding liouvillian first integrals Ipx, yq. In computational aspects,
recently, Duarte and Da Mota, [9] (2021), presented an efficient
method for computing liouvillian first integrals.

The starting point for the algebro-geometric method was al-
gorithms introduced by the works of Feng and Gao in [14,15] (2000s).
These algorithms decide whether or not an autonomous first-order
AODE, F py, y1q “ 0, has a rational general solution and computes
it if there is any. The key point is that a rational solution of such
an AODE induces a proper rational parametrization of the corre-
sponding algebraic curve, from that, we find a reparametrization
such that the second component is the derivative of the first one.
The existence of a proper parametrization can be decided by the
works of Sendra and Winkler [49] (2001). From that, a rational
general solution can be deduced.

Using the ideas of Feng and Gao in [14,15], several generaliza-
tions have been investigated since then. There are (not exhausted)
notable works. In [7], by means of rational parametrizations, Chen
and Ma reduced the problem of determining rational general solu-
tions of a first-order parametrizable AODE to the case of solving
a Riccati equation. In here, the method in [25] for finding rational
general solutions (of a Riccati equation) can be applied. This work is
not complete due to the rational forms of the rational parametriza-
tions over a rational function field are required. In [33, 34] (2010s),
Ngo and Winkler introduced a method based on parametrizations
of surfaces for finding rational general solutions of such parametriz-
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able AODEs. In [57], by determining an optimal parametrization of
an algebraic curve over a rational function field, Vo et al. overcame
the missing steps of [7] and obtained a decision algorithm of finding
strong rational general solutions of first-order AODEs. A summa-
rization and more aspects of the algebro-geometric method can be
found in Sebastian et al. [12] (2023).

In this dissertation, we inherit and extend the works by Feng
and Gao [14,15], Srinivasan [56], and Vo et al. [57] for determining
liouvillian general solutions of first-order AODEs. In particular, the
dissertation contributes the following results.

• Define rational liouvillian solutions (Definition 2.2.3) and give
Algorithm RatLiouSol in Section 2.4 for finding such rational
liouvillian solutions of first-order autonomous AODEs.

• Show that liouvillian solutions (which include the class of al-
gebraic solutions) of a first-order autonomous AODE of genus
zero must be rational liouvillian solutions (Lemma 3.2.2) and
give Algorithm LiouSolAut in Section 3.3 for determining and
classifying such liouvillian solutions in algebraic and transcen-
dental cases.

• Give Algorithm LiouSol in Section 4.1.2 for finding liouvil-
lian solutions of first-order AODEs of genus zero (included
autonomous and non-autonomous cases).

• Define power transformations (Definition 4.2.1) and propose
Algorithm RedPol in Section 4.2.2 to obtain reduced forms of
first-order AODEs. This result leads to a method for finding
liouvillian solutions of first-order AODEs of positive genera in
case their reduced forms are of genus zero (Section 4.2.3).

• Transform the problem of solving first-order AODEs with li-
ouvillian coefficients into the case of solving an AODE (4.1)
by means of change of variables (Section 4.4).
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This dissertation summarizes our works in the last three years
and give short description of our future research. The dissertation
is organized as follows.

Chapter 1 presents basic materials in differential algebra and
algebraic geometry. It also contains the main tools using regularly
in the dissertation.

In Chapter 2, we define rational liouvillian solutions of first-
order autonomous AODEs. Using the properties of rational parame-
trizations of algebraic curves, we give necessary and sufficient condi-
tions for a first-order autonomous AODE to have rational liouvillian
solutions. Based on this, we present an algorithm for determining
rational liouvillian solutions of first-order autonomous AODEs.

In Chapter 3, we apply the theory of fields of algebraic func-
tions of one variable to show that a liouvillian solutions of a first-
order autonomous AODE of genus zero, if there exists, must be a
rational liouvillian solution. By using Sylvester resultant, the forms
of the liouvillian solutions can be described in algebraic relations.
These results lead to an algorithm for determining the existence of
such liouvillian solutions.

In Chapter 4, we study liouvillian solutions of first-order
AODEs of genus zero via their associated ODEs by means of rational
parametrizations. Using the theory of fields of algebraic functions
of one variable, we prove that the property of having a liouvillian
general solution of the two above DEs are the same. This result
covers the autonomous case considered in Chapter 3. If first-order
AODEs are of positive genera, there is an approach for solving them.
First, we give an algorithm to compute a reduced form of a given
AODE by means of power transformations. From that, we give
a method for finding liouvillian solutions of first-order AODEs of
positive genera whose reduced forms are of genus zero. Finally, we
study the problem of solving first-order AODEs with coefficients in
a liouvillian extension of Cpxq by means of change of variables.
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Chapter 1

Preliminaries

The content of differential algebra and algebraic geometry
which are necessary for the dissertation can be found in the standard
textbooks such as [4, 24,43] and [8, 27,50,59], respectively.

1.1 Differential algebra

Definition 1.1.1. Let k be a field of characteristic zero. A deriva-
tion of the field k, denote by 1, is an operation of k that satisfies
the two following items:

1. pa ` bq1 “ a1 ` b1

2. pabq1 “ a1b ` ab1

for every a, b P k. A field k equipped with a derivation 1 is called a
differential field. An element a P k is called a constant if a1 “ 0.

Definition 1.1.2. A field extension E of k is called a differential
field extension of k if and only if the derivation of E restricted to k
coincides with the derivation of k.
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1.2 Plane algebraic curves

Definition 1.2.1. Let K be an algebraically closed field of charac-
teristic zero. A subset C Ă A2pKq is called an affine algebraic curve
(a curve, for briefly) if there is a non-constant irreducible polyno-
mial F P KrX, Y s such that C “ VpF q. Such F is called the defining
polynomial of C. By abuse of notation, we sometime call F px, yq “ 0
an affine algebraic curve.

1.3 Fields of algebraic functions of one
variable

Definition 1.3.1. Let K be an algebraically closed field of charac-
teristic zero. A field L Ą K is called a field of algebraic functions of
one variable over K if it satisfies the following condition: L contains
an element x which is transcendental over K, and L is algebraic of
finite degree over Kpxq.

1.4 Rational functions on algebraic curves

The content of this section can be found in [26, Chapter 4].

1.5 Preparation

Definition 1.5.1. Let F py, y1q “ 0 be a first-order AODE over K.
The algebraic curve F py, wq “ 0 where F py, wq P Kry, ws is said to
be the corresponding algebraic curve of the AODE F py, y1q “ 0.
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1.5.1 Associated fields of algebraic functions

Definition 1.5.2. Assume that L is a field of algebraic functions
over K, then there are η, ξ P L such that L “ Kpη, ξq, where η is
transcendental over K and ξ is algebraic over Kpηq. The function
field L “ Kpη, ξq is called an associated field of algebraic functions
of the affine algebraic curve C defined by irreducible polynomial F

if F pη, ξq “ 0. Such C is called the affine algebraic curve model of
the function field L.

Lemma 1.5.3. [37, Lemma 2.7] If η is a solution of the AODE
F py, y1q “ 0 which is transcendental over K, then Kpη, η1q is an
associated field of algebraic functions of the corresponding algebraic
curve C defined by F py, wq. In addition, if C is of genus zero then its
associated field of algebraic functions Kpη, η1q is of the form Kptq.

1.5.2 Rational parametrizations

Definition 1.5.5. A rational parametrization of an algebraic curve
C defined by an irreducible polynomial F py, wq is a pair of rational
functions Pptq “ prptq, sptqq P Kptq2 such that the two following
items hold.

1. For almost all t0 the point Ppt0q “ prpt0q, spt0qq P C.

2. For almost all point px0, y0q P C there exists t0 P K such
that Ppt0q “ px0, y0q.

An algebraic curve C is said to be rational or a rational curve
if it admits a rational parametrization Pptq. Moreover, if t0 is unique
then such Pptq is said to be proper or a proper parametrization of
C.
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Chapter 2

Rational liouvillian
solutions of first-order
autonomous AODEs

This chapter considers first-order autonomous AODEs

F py, y1q “ 0. (2.1)

2.1 Solving first-order AODEs by
parametrizations

Theorem 2.1.4. [14, Theorem 5] Let y “ rpxq, w “ spxq be a
proper parametrization of F py, wq “ 0 where rpxq, spxq P Q̄pxq.
Then F py, y1q “ 0 has a rational general solution if and only if
there are the following relations

ar1pxq “ spxq or apx ´ bq2r1pxq “ spxq (2.4)

9



where a, b P Q̄ and a ‰ 0. If one of the above relations is true, then
replacing x by apx ` cq (or b ´

1
apx ` cq

) in y “ rpxq, we obtain a

rational general solution of F “ 0, where c is an arbitrary constant.

2.2 Rational liouvillian solutions

Definition 2.2.2. [35, Definition 2.7] Let E be a liouvillian exten-
sion of C and let t P EzC. t is called rational liouvillian element
over C if t1 P Cptq.

Definition 2.2.3. [35, Definition 2.8] A solution y “ rptq of an
AODE F py, y1q “ 0 (2.1) is called a rational liouvillian solution
over C if it is of the form

rptq “
antn ` an´1tn´1 ` ¨ ¨ ¨ ` a1t ` a0

bmtm ` bm´1tm´1 ` ¨ ¨ ¨ ` b1t ` b0

where m, n P N, ai, bj P C, and t is a rational liouvillian element
over C.

2.3 Main results

Lemma 2.3.1. [35, Lemma 3.1] If an AODE F py, y1q “ 0 (2.1) has
a non-constant rational liouvillian solution then F py, wq “ 0 is a
rational curve.

Lemma 2.3.4. [35, Lemma 3.2] Let pr1ptq, s1ptqq be a proper parame-
trization of the algebraic curve F py, wq “ 0. If the first-order AODE
F py, y1q “ 0 has a non-constant rational liouvillian solution then
dr1

dt
s1ptq

must be of the form dz

dt
or

dz

dt
az

, where z P Cptq and a P Cz0.

Lemma 2.3.5. [35, Lemma 3.3] Let prptq, sptqq be a proper parame-

trization of F py, wq “ 0. Set hptq “

dr

dt
sptq

, we have two cases:
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1. If there is an element zptq P Cptq such that hptq “
dz

dt
, then

by setting zptq “ x, we obtain rptq is a rational liouvillian solution
of F py, y1q “ 0.

2. If there is an element zptq P Cptq such that hptq “

dz

dt
az

for
some non-zero a P C, then by setting zptq “ exp ax, we obtain rptq

is a rational liouvillian solution of F py, y1q “ 0.

Lemma 2.3.6. [35, Lemma 3.4] Let F py, wq “ 0 be a rational curve.
Suppose that pr1ptq, s1ptqq and pr2ptq, s2ptqq are two different proper
rational parametrizations F py, wq “ 0. Then the two differential
equations

t1 “
s1ptq

dr1ptq

dt

and t1 “
s2ptq

dr2ptq

dt

have the same liouvillian solvability.

Theorem 2.3.7. [35, Theorem 3.1] A first-order autonomous AODE
F py, y1q “ 0 has a non-constant rational liouvillian solution if and
only if the algebraic curve F py, wq “ 0 is rational and for every
proper parametrization prptq, sptqq, there exists zptq P Cptq such that
dr

dt
sptq

is of the form dz

dt
or

dz

dt
az

for some non-zero a P C. In the first

case, let zptq “ x, and in the second case, let zptq “ exp ax, where
x1 “ 1, then rptq is a rational liouvillian solution of F py, y1q “ 0.

2.4 An algorithm and examples

Algorithm RatLiouSol

Input: An algebraic curve F py, wq “ 0.

Output: A rational liouvillian solution of F py, y1q “ 0 if any.
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1. If the algebraic curve F py, wq “ 0 is not rational, then return
“F py, y1q “ 0 does not have a rational liouvillian solution”.
Else,

2. Compute a proper parametrization prptq, sptqq of F py, wq “ 0

and set hptq “

dr

dt
sptq

.

3. If hptq is not satisfied the cases of Theorem 2.3.7, then return
“F py, y1q “ 0 has no rational liouvillian solution”. Else,

4. If hptq “
dz

dt
where zptq P Cptq, then setting zptq “ x. There

are some cases.

(a) If hptq “
1
a

P C, then zptq “
t

a
“ x. So t “ gpxq “ ax,

and y “ rpaxq is a rational solution. It also gets rpapx ` cqq is
a rational general solution.

(b) If hptq “
1

apt ´ bq2 , then zptq “
´1

apt ´ bq
“ x, so

t “ gpxq “ b ´
1

ax
. Hence y “ r

ˆ

b ´
1

ax

˙

is a rational

solution. It also gets r

ˆ

b ´
1

apx ` cq

˙

is a rational general
solution.

(c) If t “ gpxq and both cases paq and pbq do not occur,
then F py, y1q “ 0 has a radical solution rpgpxqq. In this case,
rpgpx ` cqq is a radical general solution.

(d) If there is not an explicit function gpxq such that t “

gpxq, then rptq is a rational liouvillian solution which is not a
radical solution.

5. If hptq “

dz

dt
az

with zptq P Cptq, then we set zptq “ exp ax.
Assume t “ gpxq, then we get rpgpxqq is a rational liouvillian
solution of F py, y1q “ 0 which is not algebraic. In this case,
rpgpx ` cqq is a rational liouvillian general solution.

12



Chapter 3

Liouvillian solutions of
first-order autonomous
AODEs of genus zero

3.1 Sylvester resultant

Let Pptq “

ˆ

mptq

nptq
,

pptq

qptq

˙

, where mptq, nptq, pptq, qptq P Crts,
and consider the following polynomials

GP
1 ps, tq “ mpsqnptq ´ npsqmptq, GP

2 ps, tq “ ppsqqptq ´ qpsqpptq

as well as the polynomials

HP
1 pt, xq “ x.nptq ´ mptq, HP

2 pt, yq “ y.qptq ´ pptq.

Lemma 3.1.2. [50, Lemma 4.6] Let C be a rational algebraic curve
defining by F px, yq, and Pptq be a rational parametrization of C.
Then there exists h P N such that

restpH
P
1 pt, xq, HP

2 pt, yqq “ pF px, yqqh.
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3.2 Main results

Lemma 3.2.2. [36, Lemma 3.2] Let F py, wq “ 0 be a rational curve.
Assume that η is a liouvillian solution of F py, y1q “ 0 over C then
η is a rational liouvillian solution over C.

Theorem 3.2.3. [36, Theorem 3.3] Let F py, wq “ 0 be a rational
curve. The first-order autonomous AODE F py, y1q “ 0 has a liouvil-
lian solution over C if and only if for every proper parametrization
prptq, sptqq of F py, wq “ 0, there is a zptq P Cptq such that the associ-

ated function hptq is either of the form dz

dt
or

dz

dt
az

for some non-zero
a P C. In the first case, let zptq “ x, and in the second case, let
zptq “ exppaxq, then rptq is a liouvillian solution of F py, y1q “ 0.

Lemma 3.2.5. [36, Lemma 3.5] Assume that F py, wq “ 0 has a
proper parametrization prptq, sptqq such that hptq is of the form dz

dt
,

zptq P Cptq. If F py, wq “ 0 has another parametrization pr1ptq, s1ptqq,
then h1ptq is of the form dz1

dt
, z1ptq P Cptq.

Lemma 3.2.6. Let F py, wq “ 0 be a rational curve. If Gpx, yq “ 0
is an algebraic solution of F py, y1q “ 0, then the genus of Gpx, yq “ 0
is zero.

Theorem 3.2.8. [36, Theorem 3.8] Let F py, wq “ 0 be a rational
curve. The differential equation F py, y1q “ 0 has an algebraic so-
lution Gpx, yq “ 0 if and only if the associated function hptq is of
the form dz

dt
, where zptq P Cptq. If the solution exists, the defining

polynomial Gpx, yq can be determined by its parametrization.

Theorem 3.2.9. [36, Theorem 3.9] Let F py, wq “ 0 be a ratio-
nal curve. Assume that η is a non-algebraic liouvillian solution of
F py, y1q “ 0. There are a non-zero element a P C and an irre-
ducible polynomial G such that Gpexppaxq, ηq “ 0. In other words,
η is algebraic over Cpexppaxqq.
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3.3 An algorithm and applications

Algorithm LiouSolAut

Input: A rational algebraic curve F py, wq “ 0.

Output: A liouvillian general solution of F py, y1q “ 0 if any.

1. Compute a proper parametrization prptq, sptqq of the algebraic

curve F py, wq “ 0 and the associated function hptq “

dr

dt
sptq

.

2. If hptq “
dz

dt
with zptq P Cptq, then set zptq “ x and Pptq “

pzptq, rptqq. Set Gpx, yq is the square-free part of

restpH
P
1 pt, xq, HP

2 pt, yqq

in Lemma 3.1.2, then Gpx, yq “ 0 is an algebraic solution.
Hence, an algebraic general solution of the given equation is
Gpx ` c, yq “ 0.

3. If hptq “

dz

dt
az

with zptq P Cptq, then set zptq “ exppaxq “ u.
Set Pptq “ pzptq, rptqq, by processing the same way of the
case (2.), we obtain Gpu, yq “ 0 is a non-algebraic liouvillian
solution. Then Gpexppapx ` cqq, yq “ 0 is a liouvillian general
solution.

4. Otherwise, the algorithm terminates, and F py, y1q “ 0 has no
liouvillian solution.

In application, let P pyq P Crys be a polynomial of degree 3.
Consider the AODE

y12 “ P pyq. (3.1)
Proposition 3.3.8. [36, Proposition 4.7 and Remark 4.8] The
AODE (3.1) has a liouvillian solution over C if an only if P pyq “ 0
has repeated roots.
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Chapter 4

Liouvillian solutions of
first-order AODEs

This chapter considers a first-order AODE of the form

F pY, Y 1q “ 0, (4.1)

where F is an irreducible polynomial of Cpzqry, ws.

4.1 Liouvillian solutions of first-order
AODEs of genus zero

4.1.1 Associated differential equations

Find a solution of an AODE (4.1) in case of it has genus zero
via a proper parametrization Pptq “ puptq, vptqq induces a problem
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of considering the following differential equation

t1pzq “

vptq ´
Buptq

Bz
Buptq

Bt

. (4.3)

Definition 4.1.1. The ODE (4.3) is called an associated differential
equation of the AODE (4.1) respect to a proper parametrization
Pptq “ puptq, vptqq.

Lemma 4.1.2. [37, Lemma 3.3] Let P ptq and P̃ptq be two proper
parametrizations of F . There is a change of variables s “

αt ` β

γt ` δ
,

where α, β, γ, δ P Cpzq, αδ ´ βγ ‰ 0, between the two associated
equations of F respect to Pptq and P̃ptq.

4.1.2 Main results and an algorithm

Theorem 4.1.3. [37, Theorem 3.4] An AODE (4.1) of genus zero
has a liouvillian general solution if and only if so does its associated
ODE (4.3) respect to a certain proper parametrization Ppsq.

From [57, Theorem 4.3], there is an optimal parametrization
Pptq such that ODE (4.3) is of the form

t1 “
dt

dz
“ fpz, tq P Cpz, tq. (4.7)

Therefore, without loss of generality, we may consider an associated
ODE of the form (4.7) when solving the original AODE (4.1).
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Algorithm LiouSol

Input: A first-order AODE F pY, Y 1q “ 0 (4.1) of genus zero.

Output: A liouvillian general solution of (4.1) if any.

1. Find an optimal proper parametrization of F py, wq “ 0

Pptq “ puptq, vptqq P pCpz, tqq2.

2. Compute the associated ODE (4.7) respect to Pptq.

3. If the ODE (4.7) has a liouvillian general solution tpzq, then
return “Y pzq “ uptpzqq is a liouvillian general solution of
(4.1)”.

4. Else, return “(4.1) has no liouvillian general solution”.

4.1.3 An investigation of first-order ODEs (4.7)
and examples

Proposition 4.1.5. [37, Proposition 3.6] If the ODE (4.7) is of the
form

t1 “ bpzqt ` cpzq, (4.8)

where bpzq, cpzq P Cpzq, then it always has a liouvillian solution.

Proposition 4.1.7. [37, Proposition 3.8] Assume that the ODE
(4.7) is of the form a Riccati equation

t1 “ apzqt2 ` bpzqt ` cpzq, (4.9)

where apzq, bpzq, cpzq P Cpzq and apzq ‰ 0. Then we can determine
if it has a liouvillian solution or not.

Proposition 4.1.8. [37, Proposition 3.9] If the ODE (4.7) is au-
tonomous, we can determine if it has a liouvillian solution or not.

18



4.2 Power transformations and
their applications

4.2.1 Power transformations

Definition 4.2.1. [37, Definition 4.1] A power transformation is a
transformation of the form

u “ Y n, u1 “ nY n´1Y 1, 2 ď n P N. (4.19)

Let k0 be the lowest degree of the non-zero homogeneous
component of G, then by putting (4.19) into G we obtain

Gpu, u1q “ Y pn´1qk0

d
ÿ

k“k0

ÿ

i`j“k

cijnjY pn´1qpk´k0qY iY 1j

“ Y pn´1qk0F pY, Y 1q.

(4.22)

Lemma 4.2.2. [37, Lemma 4.2] Let Gpu, u1q and F pY, Y 1q are two
polynomials over Cpzq. If there is a power transformation (4.19)
such that the formula (4.22) is satisfied, then the followings hold.

1. For each k ě k0, the polynomial

Fnk
pY, Y 1q “

ÿ

i`j“k

cijnjY pn´1qpk´k0qY iY 1j

is homogeneous of degree nk “ npk ´ k0q ` k0, and nk0 is the
lowest degree among the non-zero homogeneous components of
F . Moreover, nk0 “ k0.

2. Let nk1 and nk2 be the degrees of two different homogeneous
components of F . Then n is a common divisor of pnk1 ´ nk0 q

and pnk2 ´ nk0 q.

3. If F is an irreducible polynomial then so is G. In this case, if
F has genus zero then the genus of G is zero too. Moreover,
the reverse of these two properties are not true.
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4.2.2 Reduced forms by power transformations

Definition 4.2.3. [37, Definition 4.3] Let F pY, Y 1q be an irreducible
polynomial. Let HDF be the set of degrees of the non-zero homoge-
neous components of F , and let k0 “ nk0 , see p1.q in Lemma 4.2.2,
be the smallest element of HDF . We define the set

DF “ tn ě 2 | n is a common divisor of all pm ´ k0q for m P HDF u .

(4.23)
Suppose that DF ‰ H, and let n P DF . We say such n induces a
transformation of the form (4.19) if there is an irreducible polyno-
mial Gpu, u1q such that the formula (4.22) is satisfied. In this case,
we say F is transformed from G by the transformation (4.19) respect
to n. We define the set

PF “ tn P DF | n induces a transformation (4.19)u. (4.24)

Clearly that, PF Ď DF . If DF “ H, then PF is an empty set too.

Lemma 4.2.4. [37, Lemma 4.4] Let F pY, Y 1q be an irreducible ho-
mogeneous polynomial then DF is an infinite set. Moreover, DF

coincides with PF .

Lemma 4.2.5. [37, Lemma 4.5] Let F pY, Y 1q be an irreducible non-
homogeneous polynomial, then DF is either a finite set or an empty
one. Moreover, DF is different from PF .

Definition 4.2.6. [37, Definition 4.6] An irreducible non-homoge-
neous polynomial F is called a reduced form if PF “ H. Otherwise,
F is called a non-reduced form.

Theorem 4.2.8. [37, Theorem 4.8] Let F be a non-reduced form.
Let n be the greatest element of PF and G be an irreducible polyno-
mial such that F is transformed form G respect to the power trans-
formation induced by n. Then G is of a reduced form.
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Algorithm RedPol

Input: An irreducible non-homogeneous polynomial F pY, Y 1q.

Output: The reduced form of F and the transformation
(4.19) if any.

1. Rewrite F in non-zero homogeneous components to find HDF .

2. Find k0 and compute DF .

3. Determine PF .

4. If PF “ H, then return “F pY, Y 1q is of reduced form and
there is no power transformation (4.19)”.

5. Else, let n “ maxPF , then return “The reduced form Gpu, u1q

and the power transformation (4.19) respect to n”.

Let F pY, Y 1q be defining polynomial of the first-order AODE
(4.1) then its reduced form Gpu, u1q (obtained by Algorithm RedPol)
can be seen as defining polynomial of the AODE

Gpu, u1q “ 0. (4.25)

Theorem 4.2.11. [37, Theorem 4.11] Suppose that F pY, Y 1q “ 0
(4.1) is transformed from a reduced AODE Gpu, u1q “ 0 (4.25) by a
power transformation (4.19) (respect to n ě 2). Then (4.1) has a
liouvillian solution if and only if so does (4.25). Moreover, if η is
a liouvillian solution of (4.25), then there is a liouvillian solution ξ

of (4.1) which satisfies
Y n ´ η “ 0. (4.26)

4.2.3 Applications

First-order AODEs of positive genera whose reduced form are
first-order AODEs of genus zero can be solved by our method, see
[18, Example 6] or [21, I¨482, 485, 487, 504, 509, 541, 542, 543, 544].
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4.3 Möbius transformations

A Möbius transformation is a transformation of the form

u “
αY ` β

γY ` δ
, u1 “

ˆ

αY ` β

γY ` δ

˙1

, (4.34)

where α, β, γ, δ P Cpzq, αδ ´ βγ ‰ 0.

Theorem 4.3.3. [38, Theorem 3.1] Assume that F is equivalent to
G. Then F has a liouvillian solution if and only if so does G. In
the affirmative case, the correspondence of such solution is one to
one.

4.4 Liouvillian solutions of first-order
AODEs with liouvillian coefficients

Consider differential equation

F̃ py, y1q “ 0, (4.40)

where y is a function of x and F̃ P Ery, ws, i.e. first-order AODEs
with the coefficients in a liouvillian extension E of Cpxq. Assume
that there is a change of variable

z “ φpxq, (4.41)

such that it turns an AODE (4.40) into an AODE (4.1), i.e.

F̃ py, y1q “ F pY, Y 1q “ 0,

where F P Cpzqry, ws. If Y pzq is a liouvillian solution of (4.1), then

ypxq “ Y ˝ φpxq

is a liouvillan solution of (4.40).

In case of considering transcendental coefficients, we refer to
[4, Chapter V]. For the case of radical coefficients, we refer to [5].
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Conclusion and future work

We have considered the class of first-order AODEs and stud-
ied their liouvillian solutions. Several methods have been proposed
to attack the problem of finding these solutions for a first-order
AODE. This dissertation has achieved the following main results.

1. We define a rational liouvillian solution (Definition 2.2.3) and
give Algorithm RatLiouSol in Section 2.4 for finding rational
liouvillian solutions of first-order autonomous AODEs.

2. We prove that liouvillian solutions (which include the class
of algebraic solutions) of a first-order autonomous AODE of
genus zero must be rational liouvillian solutions (Lemma 3.2.2)
and give Algorithm LiouSolAut in Section 3.3 for finding and
classifying such a liouvillian solution in algebraic and tran-
scendental cases.

3. We propose an algorithm (Algorithm LiouSol in Section 4.1.2)
for determining liouvillian solutions of first-order AODEs of
genus zero (included autonomous and non-autonomous cases).

4. We define power transformations (Definition 4.2.1) and give
Algorithm RedPol in Section 4.2.2 to obtain the reduced form
of a certain first-order AODE. This result leads to a method
for finding liouvillian solutions of certain first-order AODEs
of positive genera in the case that their reduced forms are of
genus zero (Section 4.2.3).

5. We transform the problem of solving first-order AODEs with
liouvillian coefficients into the case of solving an AODE (4.1)
by means of change of variables (Section 4.4).
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The following is a short description of our future research.

1. Study on the relation of the positive genera of first-
order AODEs which are generated by putting a power
transformation (4.19) into the ones of genus zero. In
Section 4.2, we have considered this problem but not yet to
give an explicit relations of such genera. To attack this prob-
lem, we are working on related documents [8, 24,27,31].

2. Keep focusing on the problem of determining liouvil-
lian solutions of first-order ODEs (4.7). This problem
has been consulted in Section 4.1.3 and we will keep it going
by focusing on the related works [4, 9, 53–55].
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